Интерстеллар: наука за кадром - Кип С. Торн
Шрифт:
Интервал:
Я снабдил червоточину тремя «ручками» – тремя параметрами, влияющими на ее вид (рис. 15.1).
Рис. 15.1. Червоточина при взгляде из балка и три «ручки настройки» (Слева – та же червоточина в балке, но на большем отдалении, благодаря чему видна ее «расширенная версия».)
Первая «ручка» – это радиус червоточины, как мог бы его измерить обитатель балка (аналогично радиусу Гаргантюа). Умножив радиус на 2π = 6,28318…, мы получим размер червоточины в окружности, как мог бы его измерить Купер, пилотируя «Эндюранс» вблизи червоточины или пролетая сквозь нее. Радиус был выбран Крисом заранее: он хотел, чтобы гравитационное линзирование звездного неба вблизи червоточины было едва заметно с Земли даже при использовании лучших телескопов, имевшихся на данный момент у NASA. Это определило величину радиуса – примерно километр.
Вторая «ручка» – длина червоточины, которая будет одинаковой и для Купера, и для обитателей балка.
Третья «ручка» определяет, насколько сильно червоточина линзирует свет от объектов позади нее. Особенности линзирования определяются формой пространства вблизи устьев червоточины. Я сделал ее похожей на форму пространства снаружи горизонта невращающейся черной дыры, всего с одним регулируемым параметром – шириной области, в которой происходит сильное линзирование. Я назвал это шириной линзирования[57] (см. рис. 15.11).
Так же как в случае с Гаргантюа (см. главу 8), я воспользовался законами теории относительности, чтобы вывести уравнения для траекторий световых лучей, проходящих вблизи червоточины и сквозь нее, и разработал процедуру манипулирования моими уравнениями, позволяющую рассчитывать гравитационное линзирование и в итоге получать кадры, которые могла бы снять камера, вращающаяся по орбите вокруг червоточины или летящая сквозь нее. Убедившись, что изображения, полученные с помощью этой процедуры, соответствуют моим ожиданиям, я отослал их Оливеру, и он написал компьютерную программу для генерации высококачественных IMAX-изображений. Эжени фон Танзелманн добавила фоновое звездное поле и астрономические объекты, которые должна была линзировать червоточина. Затем Эжени, Оливер и Пол принялись изучать, как на изображение влияют мои «ручки настройки». Я же проводил собственные исследования, независимо от них.
Эжени любезно предоставила изображения (рис. 15.2 и 15.4), где показано, как выглядит Сатурн, если смотреть на него через червоточину. (Качество изображений Эжени гораздо выше, чем позволяют мои скромные возможности.)
Рис. 15.2. Слева: три варианта червоточины с маленькой шириной линзирования (всего пять процентов от радиуса червоточины), вид из балка. Справа: то, что видит камера. Сверху вниз длина червоточины увеличивается: 0,01, 1 и 10 радиусов червоточины (Модели выполнены командой Эжени фон Танзелманн с помощью программы Оливера Джеймса, основанной на моих уравнениях.)
Сначала мы рассмотрим, как влияет на изображение длина червоточины с небольшим линзированием (маленькой шириной линзирования): см. рис. 15.2.
Если червоточина короткая (верхняя часть рисунка), камера видит в червоточине искаженное изображение Сатурна – первичное изображение, расположенное в правой половине «хрустального шара». Можно разглядеть и очень тонкое, дугообразное вторичное изображение с другого края «хрустального шара». (Дуга справа внизу – не Сатурн, а искаженное изображение окружающей планету Вселенной.)
По мере увеличения длины червоточины (рис. 15.2, посередине) первичное изображение уменьшается и сдвигается к центру, вторичное изображение также сдвигается к центру, а с правой стороны «хрустального шара» появляется очень тонкое дугообразное третичное изображение.
С дальнейшим увеличением длины (рис. 15.2, снизу) первичное изображение сжимается еще больше, все изображения сдвигаются к центру, с левой стороны «хрустального шара» возникает изображение четвертого порядка, с правого – пятого и т. д.
Чтобы понять, почему это происходит, можно нарисовать траектории лучей света возле червоточины (вид из балка): рис. 15.3. Первичное изображение приходит в камеру пучком световых лучей, идущих от Сатурна по кратчайшему из возможных путей; один из лучей этого пучка изображен на рисунке черной линией (1). Вторичное изображение достигает камеры с пучком, в который входит красный луч (2); этот пучок проходит вдоль стенки червоточины в направлении, противоположном направлению черного луча, закручиваясь влево, против часовой стрелки – по кратчайшему из возможных левовращающихся путей от Сатурна до камеры. Третичное изображение приходит с пучком зеленого луча (3), по кратчайшему из возможных правовращающихся путей, делающих больше одного оборота вдоль стенки червоточины. И, наконец, изображение четвертого порядка приходит с пучком коричневого луча (4), по кратчайшему из возможных левовращающихся путей, делающих более одного оборота вдоль стенки червоточины.
Рис. 15.3. Лучи света, идущие от Сатурна в камеру через червоточину
Можете объяснить, как приходят в камеру изображения пятого и шестого порядка? Почему по мере удлинения червоточины изображения уменьшаются? И почему изображения появляются с края «хрустального шара», а сдвигаются к центру?
Разобравшись, как длина червоточины влияет на кадр, мы оставим длину постоянной и весьма небольшой – равной радиусу червоточины – и займемся варьированием гравитационного линзирования. Мы увеличивали ширину линзирования от почти нулевой до примерно половины радиуса червоточины и следили, какой эффект это оказывает на изображение. На рис. 15.4 показаны два крайних случая.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!